
SALLMA: A Software Architecture for LLM-Based
Multi-Agent Systems

Marco Becattini, Roberto Verdecchia, and Enrico Vicario
Software Technologies Laboratory, University of Florence, name.surname@unifi.it

Abstract—As a new and disruptive technology, the introduction
of large language models (LLMs) may be the first step into a
paradigm shift of how we develop and deploy software-intensive
systems. While the capabilities of LLM agents for software
engineering and architecture tasks are currently explored, how to
architect LLM-based systems appears to be to date an uncharted
territory. Software architectures based on a single LLM agent
face inherent challenges, such as lack of task customization, lack
of memory, and limited access to ground truth. These challenges
become especially pressing in real-world contexts that demand
persistent context, validated information, and task-specific flex-
ibility. As a potential solution to overcome these challenges,
multiple LLM-agents can be adopted for specialized tasks within
a single software-intensive system. In this contribution, we open
the discourse on architecting LLM-intensive software products
by presenting SALLMA, a Software Architecture for LLM-
based Multi-Agent systems. SALLMA leverages two core layers,
namely (i) the Operational Layer, responsible for request intent
management, handling real-time task execution and dynamic
orchestration of agents, and (ii) the Knowledge Layer, used to to
store and manage metamodels and configurations for workflows
and agents. To primarily assess the viability of SALLMA, we
develop a proof of concept leveraging as key technologies Docker,
Kubernetes, Python, LangChain, Hugging Face, Mistral, LLaMA,
and SQL and NoSQL databases. Currently, SALLMA is deployed
to provide information on behalf of public administration offices,
and is currently utilized in a business simulation scenario.

I. INTRODUCTION

Rapid advancement of Large Language Models (LLMs)
presents promising potential for efficiently tackling complex
and dynamic challenges across a wide range of fields, e.g., co-
ordinating enterprise-level business services of heterogeneous
nature for personalized customer support. However, single-
agent LLM systems face inherent limitations, particularly in
memory retention, adaptability, and trade-off between broad
generalist capabilities and specialized task configurations.
These challenges reduce their effectiveness in real-world,
complex and multifaceted scenarios [1].

Research has so far predominantly focused on centralized
LLM architectures [2], leaving a gap in approaches that utilize
distributed, multi-agent systems. To address this gap, the
present paper introduces SALLMA (Software Architecture for
LLM-Based Multi-Agent Systems), a software architecture
leveraging a network of atomic, task-specific LLM agents,
designed for a modular and distributed architecture.

SALLMA is organized into two core layers: the Opera-
tional Layer and the Knowledge Layer. The operational layer
focuses on real-time task processing and orchestrates agents
dynamically to form an efficient workflow in response to each

incoming request. It ensures that agents are structured in a
way that enables them to work collaboratively and effectively,
streamlining the workflow process to handle tasks as they
are received. The Knowledge Layer is responsible for storing
information about the models used by the Operational Layer
in dedicated catalogs. Specifically, it includes a catalog for
the metamodel of the agent workflow, detailing workflow
structures and relationships; a catalog for the metamodels of
possible configurations for each agent; and a catalog for the
deployment characteristics of each workflow.

SALLMA is designed as a distributed, modular architecture
to potentially support scalability, adaptability, and resilience.
Specifically, we hypothesize that container-based deployments
can streamline resource expansion under rising workloads
(scalability), while task-specific agent configurations facilitate
the replacement or integration of new agents without dis-
rupting the entire system (flexibility). Moreover, by isolating
agents into separate components, failures can be contained and
potentially be localized more effectively (testability). However,
we acknowledge that these benefits require further empirical
validation.

To assess SALLMA viability, we implemented a concrete
instance of the architecture by selecting a range of key
technologies, with the most notable being Docker for con-
tainerization, Kubernetes for orchestration, and LangChain for
workflow management.

This paper seeks to foster meaningful discussion among re-
searchers on multi-agent LLM architectures, with a particular
focus on the dual-layer approach of SALLMA. Specifically,
we aim to study the advantages of distinguishing between
operational and knowledge-managed layers, highlighting how
this design can enhance scalability, responsiveness, and the
capacity to manage complex, context-driven tasks effectively.

II. MOTIVATION

SALLMA is motivated by limitations observed in real-world
applications when using single-agent For instance, a single
LLM-based agent may be required to provide technical sup-
port, discuss legal matters, and address financial queries. Such
systems face (i) suboptimal hyperparameter configuration,
which leads to mismatched responses across varied domains;
(ii) lack of persistent memory, hindering context retention for
multi-step problems; (iii) limited means to validate ground
truth, resulting in inaccuracies when reliable information is
required; and (iv) static, centralized deployments that impede
reliability management [3].



These issues motivate the need an integration of established
software engineering principles [4], including modular design,
containerized deployment, and dynamic resource management,
all reflected in SALLMA’s multi-agent strategy. Specifically,
each agent can be uniquely configured and maintain state or
memory through tools and persistence layers, and integrate
verified data for ground truth. A distributed deployment model
also addresses reliability by supporting flexible execution
across multiple nodes.

III. SALLMA OVERVIEW

SALLMA (Software Architecture for LLM-Based Multi-
Agent systems) is a modular and adaptive architecture de-
signed to orchestrate multiple large language model (LLM)
agents across a cloud-to-edge continuum. The architecture
addresses the limitations of single-agent LLM systems by
enabling distributed, task-specific agents to operate collabo-
ratively in complex, dynamic environments.

The architecture of SALLMA is designed with two pri-
mary layers—the Operational Layer and the Knowledge
Layer—proposing an application of Fowler’s Reflection pat-
tern [5] to multi-agent system architecture, thereby enabling
dynamic adaptability and modularity within the framework.

A. SALLMA Operational Layer

The Operational Layer in SALLMA is responsible for
handling real-time interactions and orchestrating task-specific
agents to achieve the intended outcome of each request. This
layer acts as the dynamic core, where tasks are processed
through an integrated sequence of components designed to
ensure efficient and adaptive operation. The primary elements
of the Operational Layer layer are:
• Intent Management Agent: This component acts as the

entry point for all incoming tasks, parsing user requests
to understand their intent. By doing so, it sets up the
system to retrieve workflows and configure agents specific
to the request nature, using predefined intents stored in the
Knowledge Layer.

• Workflow Management Agent: Once the intent is identi-
fied, the Workflow Management Agent decomposes the task
into subtasks and assigns them to the appropriate special-
ized agents. This agent-driven workflow ensures that each
subtask receives attention based on its specific requirements.

• Routing Manager: This component determines if an appro-
priate instance of the workflow exists to handle the requested
execution. If an instance is available, it routes the request
to it; if not, it requests the Deployment Manager to create
a dedicated instance of the necessary cognitive workflow.

• Deployment Manager: The Deployment Manager deploys
workflows by leveraging configurations and resources out-
lined in the Knowledge Layer, ensuring each deployment
aligns with preconfigured specifications and can adjust dy-
namically to changes or failures.

• Cognitive Workflow Manager: The Cognitive Workflow
Manager orchestrates task execution within a containerized

environment managed by Kubernetes. It leverages a chain-
of-thought process, managed by a dedicated manager, to
invoke specialized agents in form of specific LLM instances,
optimized for tasks, as defined in the workflow metamodel
catalog. The Cognitive Workflow Manager thus enables
interaction with tools for database operations. The database
stores two key types of data: Foundational data that informs
the LLMs for reliable RAG-based (retrieval-augmented gen-
eration) operations, and persistent memory for maintaining
context across multiple agents and executions.
Thus, the Operational Layer processes each request through

an optimized chain of thought, selecting the most suitable
agent with access to reliable data sources and persistent
memory. This setup also allows for flexible deployment across
distributed resources, including cloud and edge environments.
By using a workflow-driven approach, it supports modular
task processing, enhancing SALLMA’s adaptability to com-
plex, multi-agent scenarios. These workflows, termed “cogni-
tive workflows” represent structured tools designed to deliver
context-aware, intelligent outcomes.

B. SALLMA Knowledge Layer
The Knowledge Layer serves as the structural foundation for

metamodel management of SALLMA, maintaining a catalog
of reusable configurations of workflows and agents. Its primary
components include:
• Workflow Metamodel Catalog: SALLMA’s Workflow

Metamodel catalog stores predefined workflow configura-
tions tailored for various task categories. These configura-
tions, organized as metamodels, define the sequence of agent
interactions and tool usage necessary for each workflow.
Specific characteristics of each agent are retrieved from the
Agent Metamodel Catalog, enabling the Workflow Manage-
ment Agent to select and configure the most appropriate
cognitive workflow for each request efficiently.

• LLM Configuration Catalog: This catalog holds prede-
fined configurations for each LLM agent, allowing for quick
access and deployment of optimized agent settings based on
task requirements. The catalog includes hyperparameters,
resource allocations, and specifications for each agent to
ensure efficiency and task alignment.

• Deployment Metamodels Catalog: To support flexible
deployment across diverse environments, such as cloud or
edge systems, the Knowledge Layer maintains a set of de-
ployment models that detail the proper congnitive workflow
configurations for each operational scenario. These models
ensure that SALLMA can dynamically adapt to varying
infrastructure constraints, balancing latency, compute power,
and resource availability.
Together, these catalogs and archives enable SALLMA to

operate with both high efficiency and adaptability. Specifically,
by maintaining a structured yet flexible archive of agent
configurations and workflows, the Knowledge Layer serves as
the essential backbone of the system, enabling SALLMA to
dynamically respond to diverse, complex tasks with optimized
configurations.



SALLMA Architecture
Operational

Layer
Knowledge

Layer

WorkFlow 
Metamodel

Catalog

Agents 
Metamodel

Catalog

Workflow
Management 

Agent

Intent 
Management 

Agent

Routing
Manager

Cognitive Workflow Manager

Specialized Agents Tools

Source of
truth for RAG

Data for Memory
for Persistence

Kubernetes

Chain of 
thought 
manager

Deployment
Manager

deploys

retrieve
workflow

and agent
settings
for the
intent

Deployment
Metamodels

Catalog

retrieve 
cognitive
workflow

 depoyment
 metamodels

updates

selects

routes

request execution

... Component

LLM based 
agent

SQL Db

NoSQL Db

Docker
Container

Kubernetes
Istance

LangChain
based

Legend

Fig. 1: SALLMA Architecture Overview — A distributed, multi-agent system featuring an Operational Layer for real-time
task execution and a Knowledge Layer for workflow and agent configuration meta model management.

IV. KEY ARCHITECTURAL DECISIONS AND ASSUMPTIONS

In this section, we briefly outline the architectural decisions
and architectural assumptions we deem most important to
report to support the design documentation of SALLMA.

In designing SALLMA’s architecture, the most relevant
choice was adopting a modular and distributed Multi-Agent
System architecture. This approach enables flexible deploy-
ment of components essential to cognitive workflows, allowing
for the optimal selection and placement of components within
each workflow for deployment in the most effective locations.

As additional key architectural decision, each component
and its inter-dependencies are positioned based their require-
ments, such as resource demands and latency constraints. This
flexibility ensures resource-efficient deployment and enhances
the system’s responsiveness to diverse task requirements. This
also enables the possibility to add constraints, e.g., in terms of
energy consumption, a perspective important in terms of the
evergrowing environmental sustainability of LLMs.

The SALLMA architecture presumes that (i) reliable net-
work bandwidth and adequate computational resources is

always available, and (ii) all components and agent modules
operate within secure environments that fully enable commu-
nication between components.

V. SALLMA PROOF OF CONCEPT IMPLEMENTATION AND
KEY TECHNOLOGIES

In this section, we outline the technologies we used to
develop a proof of concept (POC) of SALLMA. The POC
was created to explore the feasibility and operational dynamics
of the proposed architecture from an exclusively functional
suitability point of view. In preliminary in-house experiments
focused on a small-scale set of tasks, SALLMA effectively
demonstrated multi-agent orchestration and retention of con-
textual information, showing promise for handling diverse
requests. While these results are primarily qualitative, they
confirm the viability of a multi-agent, workflow-based ap-
proach. Notably, SALLMA provides a flexible blueprint that
defines fundamental components and specifies their interac-
tions within a distributed, multi-agent framework. The POC
was designed to assess SALLMA’s capacity to support scalable



agent collaboration and complex task management, though
alternative configurations are possible.

The POC has been implemented using containerized Large
Language Models (LLMs) managed with Docker and orches-
trated via Kubernetes with Python as the primary codebase. To
streamline LLM management, especially for database integra-
tions in operations like retrieval-augmented generation (RAG),
SALLMA utilizes LangChain1 due to its adaptability in man-
aging multi-step workflows. LangChain enables agents to re-
trieve, process, and act on contextual information in real time,
efficiently orchestrating RAG workflows where information
from the SALLMA database is dynamically incorporated into
responses.

Within SALLMA’s modular architecture, we use Docker for
containerization, enabling each LLM-powered agent to operate
independently within its own dedicated environment. Hugging
Face2, a public repository of open large language models
(LLMs), is integrated to provide access to a vast catalog of
models, facilitating seamless deployment of diverse options
like Mistral3 and LLaMA4. Docker was chosen for its industry-
standard status and strong compatibility with Hugging Face,
which provide a broad range of choice for agents.

The SALLMA POC utilizes Kubernetes to manage and
orchestrate containerized deployments for the Cognitive Work-
flow Manager (see Section III-B). Kubernetes provides the
essential infrastructure for deploying, scaling, and managing
containerized applications, enabling dynamic resource allo-
cation across nodes that host LLMs, application tools, and
databases. The tools are Python-based applications, with SQL
databases used for structured data and NoSQL databases
for unstructured data. This setup ensures that the SALLMA
POC can achieve balanced load distribution, high availability,
and efficient resource utilization. Kubernetes was chosen as
the de facto standard for distributed architectures, offering
robust support for modular and scalable deployment of com-
ponents within the SALLMA system. The Knowledge Layer
in SALLMA is built with Python-based components that
access SQL and NoSQL databases to store meta-models and
configurations in real time.

As an initial exploration of the architectural benefits af-
forded by separating the Operational and Knowledge Layers,
we conducted a small-scale, in-house evaluation using a set of
ad hoc tasks. Specifically, we deployed one cognitive work-
flow requiring software engineering knowledge—particularly
design patterns—and another focused on managing students’
bureaucratic needs. Requests were routed to SALLMA’s Intent
Management Agent, which successfully summoned the appro-
priate Cognitive Workflow for each domain. In both cases,
relevant contextual data was retrieved via retrieval-augmented
generation (RAG), enabling more accurate and context-aware
responses. Although these observations remain anecdotal and

1https://www.langchain.com. Accessed 11th November 2024.
2https://huggingface.co. Accessed 11th November 2024.
3https://mistral.ai. Accessed 11th November 2024.
4https://www.llama.com. Accessed 11th November 2024.

limited in scope, two key insights emerged: (i) that distinguish-
ing between Operational and Knowledge Layers appears to
improve how context is managed, resulting in better responses
and (ii) that having dedicated agents for specific tasks facil-
itated independent scaling, replacement, and reconfiguration,
ultimately improving responsiveness when handling multiple
domains or heavier workloads. We emphasize that these
findings are preliminary. Robust evaluations—particularly in
large-scale or industrial environments—are needed to quantify
improvements in performance, resource utilization, and user-
perceived response quality.

VI. CONCLUSION AND FUTURE WORK

In this contribution we present SALLMA, a architecture
designed to overcome single-agent LLM limitations by im-
plementing a distributed multi-agent system panning cloud-
to-edge environments. Through modular, task-specific agents
coordinated through a cognitive framework, SALLMA can
enable efficient, adaptive workflows meeting real-time oper-
ational demands.

Concretely, a PoC of SALLMA was implemented by fo-
cusing primarily on exploring the functional suitability of the
architecture. In a follow up stage, SALLMA was deployed in
an industrial setting, namely to provide information on behalf
of public administration offices, and is currently utilized in a
business simulation scenario.

We aim toward further and collaborative exploration in
the evolving field of multi-agent LLM architectures. The
intersection of LLMs and software architecture, though still
nascent, presents expansive opportunities. As future work, we
plan to evaluate and tune SALLMA via industrial case studies,
study alternative deployment configurations, and explore the
integration of diverse LLMs across different sectors.

ACKNOWLEDGMENT

This research paper was developed with assistance of large
language models to enhance the clarity of its written text.

This work was partially supported by the European Union
under the Italian National Recovery and Resilience Plan
(NRRP) of NextGenerationEU, partnership on “Telecommu-
nications of the Future” (PE0000001 - program “RESTART”).

REFERENCES

[1] J. He, C. Treude, and D. Lo, “Llm-based multi-agent systems for
software engineering: Vision and the road ahead,” arXiv preprint
arXiv:2404.04834, 2024.

[2] S. Minaee, T. Mikolov, N. Nikzad, M. Chenaghlu, R. Socher, X. Am-
atriain, and J. Gao, “Large language models: A survey,” arXiv preprint
arXiv:2402.06196, 2024.

[3] N. R. Jennings, “A survey of agent-oriented software engineering,”
Knowledge Engineering Review, vol. 15, no. 4, pp. 215–249, 2000.

[4] I. K. Aksakalli, T. Çelik, A. B. Can, and B. Tekinerdoğan, “Deployment
and communication patterns in microservice architectures: A systematic
literature review,” Journal of Systems and Software, vol. 180, p. 111014,
2021.

[5] M. Fowler, “Dealing with properties.” https://martinfowler.com, June
1997. Available at https://martinfowler.com.

https://www.langchain.com
https://huggingface.co
https://mistral.ai
https://www.llama.com
https://martinfowler.com
https://martinfowler.com

	Introduction
	Motivation
	SALLMA Overview
	SALLMA Operational Layer
	SALLMA Knowledge Layer

	Key Architectural Decisions and Assumptions
	SALLMA Proof of Concept Implementation and Key Technologies
	Conclusion and Future Work
	References

